Supporting Information to

Effect of Trace Impurities in Perchloric Acid on Blank Voltammetry of Pt(111)

Nicci Fröhlich, Julia Fernández-Vidal, Francesc Valls Mascaró, Arthur J. Shih, Mingchuan

Luo, Marc T.M. Koper

SI Fig. 1 CV data for $\mathrm{Pt}(111)$ in $0.1 \mathrm{M} \mathrm{HClO}_{4}$ changing the lower vertex potential (LVP) from 0.06 V (10 cycles), to 0.5 V (30 cycles), to 0.4 V (30 cycles), to 0.3 V (60 cycles), to 0.2 V (30 cycles), to $0.1 \mathrm{~V}(40$ cycles), to $0.06 \mathrm{~V}(30$ cycles). The CVs with LVPs of 0.06 V before cycling (black) and after cycling (pink) show similar current densities across the CV, showing the "recovery" of the charge density, whereas other LVPs show marked quenching as a function

$$
\text { of cycling. Scan rate }=50 \mathrm{mV} \mathrm{~s}^{-1} \text {. }
$$

SI Fig. 2 CV data for $\mathrm{Pt}(111)$ in $0.1 \mathrm{M} \mathrm{HClO}_{4}$ when carrying out 100 potential cycles. Arrows indicate the changes over cycling. Scan rate $=50 \mathrm{mV} \mathrm{s}^{-1}$.

SI Fig. 31 CV of $\mathrm{Pt}(111)$ in $0.1 \mathrm{M} \mathrm{HClO}_{4}$ with a $200 \mu \mathrm{M}$ addition of HNO_{3}, showing the marked appearance of the reduction peak at 0.32 V not observable in blank $0.1 \mathrm{M} \mathrm{HClO}_{4}$. Scan rate $=$

$$
50 \mathrm{mV} \mathrm{~s}^{-1} .
$$

SI Fig. 42 Blank $\mathrm{Pt}(111) \mathrm{CVs}$ in 0.1 and $1 \mathrm{M} \mathrm{HClO}_{4}$ and $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$, showing that the doublelayer electroreduction peak at 0.48 V in $1 \mathrm{M} \mathrm{HClO}_{4}$ is consistent with the potential of the sharp sulphate adsorption feature in $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. Scan rate $=50 \mathrm{mV} \mathrm{s}^{-1}$.

SI Fig. 53 Scan-rate dependence of the peak current of the cathodic double-layer reduction peak in $1 \mathrm{M} \mathrm{HClO}_{4}$ with linear fit in accordance with Randles-Ševčík equation (Equation 1 in manuscript). $R^{2}=0.999$.

SI Fig. 64 Integrated in situ FTIR peak at $1650 \mathrm{~cm}^{-1}$ corresponding to NO as a function of potential of $\mathrm{Pt}(111)$ in $0.1 \mathrm{M} \mathrm{HClO}_{4}$.

SI Table 1: Purity and impurities listed by manufacturer for liquids for electrolyte

Chemical Vendor and Item ID	Impurities listed by manufacturer
Ultra High Purity Water Millipore	$<5 \mathrm{ppb}$ total organic content (TOC) $18.2 \mathrm{M} \Omega \cdot \mathrm{cm}$ at $25^{\circ} \mathrm{C}$
Perchloric Acid (HClO_{4}) 60\% Merck 100518 Supelco EMSURE ACS Grade	Color ≤ 10 Hazen Chlorate $\left(\mathrm{ClO}_{3}\right): \leq 10(\mathrm{ppm})$ Chloride (Cl^{-}): ≤ 10 (ppm) Phosphate and Silicate (as SiO_{2}): $\leq 5(\mathrm{ppm})$ Free chlorine (Cl): ≤ 0.5 (ppm) Sulfate $\left(\mathrm{SO}_{4}\right): \leq 10(\mathrm{ppm})$ Total nitrogen (N): ≤ 10 (ppm) Heavy metals (as Pb): ≤ 1 (ppm) $\mathrm{Ag}: \leq 0.1$ (ppm) Al: ≤ 0.05 (ppm) As: ≤ 0.05 (ppm) Ba: ≤ 0.02 (ppm) Be: ≤ 0.02 (ppm) $\mathrm{Bi}: \leq 0.1$ (ppm) Ca: ≤ 0.5 (ppm) $\mathrm{Cd}: \leq 0.05$ (ppm) Co: ≤ 0.05 (ppm) Cu: ≤ 0.1 (ppm) $\mathrm{Fe}: \leq 1.0$ (ppm) Ge: ≤ 0.05 (ppm) $\mathrm{K}: \leq 0.1$ (ppm) Li: ≤ 0.02 (ppm) $\mathrm{Mg}: \leq 0.5$ (ppm) $\mathrm{Mn}: \leq 0.02$ (ppm) Mo: ≤ 0.05 (ppm) $\mathrm{Na}: \leq 0.5$ (ppm) $\mathrm{Ni}: \leq 0.1$ (ppm) $\mathrm{Pb}: \leq 0.05$ (ppm) $\mathrm{Sr}: \leq 0.02(\mathrm{ppm})$ $\mathrm{Ti}: \leq 0.1$ (ppm) TI: ≤ 0.05 (ppm) $\mathrm{V}: \leq 0.05$ (ppm) $\mathrm{Zn}: \leq 0.1$ (ppm) Zr: ≤ 0.1 (ppm) Residue on ignition (as sulfate): ≤ 30 (ppm)
Sulfuric Acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right) \geq 95 \%$ Merck Suprapur ${ }^{\ominus}$	$\begin{array}{\|l} \hline \text { Chloride }\left(\mathrm{Cl}^{-}\right): \leq 100 \mathrm{ppb} \\ \text { Nitrate }\left(\mathrm{NO}_{3}^{-}\right): \leq 200 \mathrm{ppb} \\ \text { Phosphate }\left(\mathrm{PO}_{4}^{3-}\right): \leq 100 \mathrm{ppb} \\ \hline \end{array}$
Sodium perchlorate monohydrate $\left(\mathrm{NaClO}_{4} . \mathrm{H}_{2} \mathrm{O}\right) \geq$ 99\% Merck EMSURE ${ }^{6}$	```Chloride (\(\mathrm{Cl}^{-}\)): \(\leq 0.002 \%\) Chloride, Chlorate (as Cl): \(\leq 0.002 \%\) Sulfate (\(\mathrm{SO}_{4}\)): \(\leq 0.002 \%\) Total nitrogen (N): \(\leq 0.0005 \%\)```

	$\begin{aligned} & \text { Ca }: \leq 0.002 \% \\ & \text { Fe: } \leq 0.0003 \% \\ & \text { K: } \leq 0.005 \% \end{aligned}$ Heavy metals (as Pb): $\leq 0.0005 \%$
Nitric acid $\left(\mathrm{HNO}_{3}\right) \geq 65 \%$ Merck Suprapur	Chloride (Cl) $\leq 50 \mathrm{ppb}$ Phosphate $\left(\mathrm{PO}_{4}\right) \leq 10 \mathrm{ppb}$ Sulfate $\left(\mathrm{SO}_{4}\right) \leq 200 \mathrm{ppb}$
Perchloric Acid (HClO_{4}) 70\% Merck Suprapur ${ }^{\circ}$	Chloride (Cl^{-}): $\leq 1000 \mathrm{ppb}$ Phosphate: $\leq 100 \mathrm{ppb}$ Sulfate $\left(\mathrm{SO}_{4}\right): \leq 1000 \mathrm{ppb}$ Total nitrogen (N): $\leq 5000 \mathrm{ppb}$

SI Table 2: Purity listed on cylinder and impurities for gases used to purge electrolyte, supply H_{2} to the reversible hydrogen electrode (RHE), and to quench $\mathrm{Pt}(111)$ after annealing with a butane torch.

Chemical Vendor and Item ID	Impurities listed by manufacturer
Argon	
Linde 5.0 grade $\geq 99.999 \%$	$\mathrm{~N}_{2} \leq 5 \mathrm{ppm}$
	$\mathrm{O}_{2} \leq 2 \mathrm{ppm}$
	Total hydrocarbon content $(\mathrm{THC}) \leq 0.2 \mathrm{ppm}$
	$\mathrm{H}_{2} \mathrm{O} \leq 3 \mathrm{ppm}$
Hydrogen	$\mathrm{N}_{2} \leq 3 \mathrm{ppm}$
Linde 5.0 Detector Grade $\geq 99.999 \%$	Total hydrocarbon content $(\mathrm{THC}) \leq 0.5 \mathrm{ppm}$
	$\mathrm{O}_{2} \leq 2 \mathrm{ppm}$
	$\mathrm{H}_{2} \mathrm{O} \leq 5 \mathrm{ppm}$

